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Definition An element of a ring is called clean if it can
be expressed as a sum of an idempotent and a unit in the
ring. A ring is called clean if each of its elements is clean.

• Clean Group Algebras

Observation SupposeKH is clean for every finitely gen-
erated subgroup H of a group G. Then KG is clean.

Observation If G is a locally finite group, then KG is
clean.



• — Notation

∆(G) = {x ∈ G | [G : CG(x)] <∞}
∆+(G) = {x ∈ ∆(G) | o(x) <∞}

= {x ∈ G | [G : CG(x)] <∞ and o(x) <
∞}
Λ(G) = {x ∈ G | [G : CG(x)] = l.f.}
(Recall [G : H] = l.f. means [K : K∩H] <∞
for all finitely generated subgroups K of G.)

Λ+(G) = {x ∈ Λ(G) | o(x) <∞}
For any group G and any element
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D∞ : Infinite Dihedral group, that is, the group
generated by two elements a and b where a is of
infinite order and b2 = 1, ab = ba−1.

For any ring R,

U(R) : Group of all units in R.



Definition A groupG is called polycyclic ifG has a finite
subnormal series

(1) = G0 C G1 C · · · C Gn = G (1)

such that each quotientGi+1/Gi is cyclic. IfGi+1/Gi is
either cyclic or finite then G is called polycyclic-by-finite.

Definition A group G is called nilpotent if G has a cen-
tral series, that is, a normal series

(1) = G0 ≤ G1 ≤ · · · ≤ Gn = G

such that each quotient Gi+1/Gi is contained in the
center of G/Gi for all i.



Proposition Let K be a field and G be a polycyclic-by-
finite group. Then KG is clean if and only if G is finite.
In particular, for any field K, the group algebra KD∞
of the infinite dihedral group, D∞, is not clean.

Proposition Let G be a finitely generated solvable group
such that the group algebra KG is clean. Then G is
finite.

Proof Proof by induction on the solvability length of G.

Corollary Let G be a group with a torsion FC subgroup.
Suppose H is an FC normal subgroup of G such that
G

H
is finitely generated solvable. If KG is clean then G

is locally finite.

Theorem Let G be a nilpotent or FC or locally FC group.
Then KG is clean if and only if G is locally finite.



Proposition Let G be a residually finite p-group and K
be a field of characteristic p > 0. Then KG is clean if
and only if it is local and hence G is torsion. (Recall a
group G is called residually finite if for every g 6= 1 in G
there exists a normal subgroup N of G such that g /∈ N
and G

N is finite.)

Lemma Let G be a residually finite p-group and K be
a field of characteristic p > 0. Then KG has no non
trivial idempotents.

Example Let G be an infinite cyclic group. Since G is a
free group, it is residually a finite p-group for all primes p.
However, KG is not clean. Note that, in this example,
for every non trivial subgroup H of G, K[GH ] is clean but
KH is not clean.

Proposition Let KG be a prime group algebra in which
all idempotents are central. If KG is clean then KG is
local.

Corollary Let KG be a prime group algebra such that
supporting group of all idempotents in KG is finite. If
KG is clean then G is torsion.



• Clean elements in KD∞

— D∞ : Infinite Dihedral group, that is, the group
generated by two elements a and b where a is of
infinite order and b2 = 1, ab = ba−1.

— A : hai, infinite cyclic group generated by a.

— For any group G and any element
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• Clean elements in KD∞

— Some remarks

∗ For any unit α+ βb in KD∞, αα∗ − ββ∗ ∈
K \ {0}.

∗ For any idempotent α+βb inKD∞, α+α∗ =
1 and αα∗ = ββ∗.

∗ Any idempotent e inKD∞ has the form 2−1+
α1 + βb where α1 = −α∗1 and α1α∗1 − ββ∗

is a nonzero element of K.

∗ If char(K) = 2, then KD∞ has no nontriv-
ial idempotents and hence any element α in
KD∞ (char(K) = 2) is clean if and only if
either it is a unit or α− 1 is a unit.



• Clean elements in KD∞

Theorem Let K be a field of characteristic not equal to
2 and let α ∈ KA ⊂ KD∞.

1. If α = a + β, where β = −β∗ and a ∈ K then α
is clean in KD∞ if and only if a 6= 0, 1.

2. If α = α∗, then α is clean in KD∞ if and only if
α ∈ K.

Remark. Same argument can be used if K is replaced
with a commutative domain in which 2 is invertible.

Remark. It can be similarly proved that

1. If 0 6= α = α∗ ∈ KA then α(1 + b) is clean if and
only if α ∈ K.

2. If α∗ = −α ∈ KA then α(1 + b) is never clean.



• Clean elements in Polynomial Rings

Known R[x] is not clean. (Infact, x ∈ R[x] is not
clean.)

Observation If R is reduced ring then clean elements in
R[x] are in R.

Proposition Cl(R[X]) = Cl(R) if and only if R is
reduced where Cl(R) denotes the set of clean elements
in R .

Proof If a ∈ R is a nilpotent element, then u = 1+ ax

is invertible in R[x], so Cl(R[X]) 6= Cl(R) in this case.
If R is reduced then U(R[x]) = U(R) and E(R[x]) =
E(R). Thus also Cl(R[x]) = Cl(R).



• Idemptents in Polynomial Rings and other ring
extensions

For a unital ring R,

E(R) : Set of all idempotents in R.

J(R) : Jacobson radical of R.

B(R) : Prime radical of R.



Lemma Let R be a ring and e(x) =
P∞
i=0 eix

i ∈ R[[x]]

be an idempotent. If e0ei = eie0, for every i ≥ 1,
then e(x) = e0. In particular, if R is abelian, then
E(R[[x]]) = E(R[x]) = E(R).

Proposition Let Sn denote one of the following rings
R[x1, . . . , xn],R[[x1, . . . , xn]] andR[x

±1
1 , x±12 , . . . , x±1n ].

If e is a central idempotent of Sn, then e ∈ R.

Corollary (Bass) Let K be a commutative ring and G

an abelian group with the torsion part H. Then any
idempotent of KG belongs to KH.



Theorem For a ringR, the following conditions are equiv-
alent

1. R is abelian.

2. Idempotents of R commute with units of R.

3. E(R[[x]]) = E(R).

4. E(R[x, x−1]) = E(R).

5. E(R[x]) = E(R).

6. There exists n ≥ 1 such that R[x] does not contain
idempotents which are polynomials of degree n.



Remark Each of the statements in the above proposition
is equivalent to the statement

The rings R[x], R[[x]], R[x, x−1] are all abelian.

Corollary Let S denote one of the rings R[x1, . . . , xn],
R[x±11 , x±12 , . . . , x±1n ], R[[x1, . . . , xn]]. Then R is is
abelian if and only if S is abelian if and only if E(S) =
E(R).



Proposition Let M be an additive monoid with neutral
element 0 and suppose R =

L
m∈M Rm is anM-graded

ring. Then

1. If R0 is abelian and E(R) = E(R0), then R is an
abelian ring.

2. Suppose M = Z. Then R is abelian if and only if
R0 is abelian and E(R) = E(R0).

Remark The analogue of the statement ‘the polynomial
ring R[x] is abelian if and only if R is abelian’ does not
hold for Z-graded rings. Indeed, if K is a field and
e = (1, 0) ∈ K × K = R0 then R0 is commutative
but the idempotent e is not central in R = R0[x;σ],
where σ is the automorphism of R0 = K×K switching
components.



Example Let R =M2(Z4). E =

Ã
1 + x2 x+ x3

3x 3x2

!
.

E is an idempotent in R[x].

E is conjuage to the idempotent

Ã
1 0
0 0

!
in R. Indeed,

E = P−1
Ã
1 0
0 0

!
P where P =

Ã
1 x
x 1 + x2

!
.

Remark Note that if e(x) =
Pn
i=0 eix

i ∈ R[x] is an
idempotent then e(x) = e0+b where e0 is an idempotent
in R.



Proposition Let e, b, u be elements in a ring R such that
e2 = e and u = 2e − 1. Then the following conditions
are equivalent.

1. e+ b is idempotent.

2. be+ eb+ b2 = b.

3. (1 + bu)e = (e+ b)(1 + bu).

Moreover, if one of the equivalent statements holds
then

4. bu+ ub = −2b2.

5. b2u = ub2 and (1 + bu)(1 + ub) = (1 + ub)(1 +

bu) = 1− b2.

6. 1 + bu is invertible iff 1 + ub is invertible iff 1− b2

is invertible.



7. (1 + 2ub)(1 + 2bu) = 1 and b2u = ub2.



Corollary Let e, b ∈ R be such that e, e + b ∈ E(R).
If 1 − b2 is invertible, then e and e + b are conjugate.
In particular this holds when either b is nilpotent or b ∈
J(R) - the Jacobson radical of R.

Remark It is possible for two idempotents to be conju-
gates without 1− b2 being invertible.

Example Let R = M2(Z4). e =

Ã
1 0
0 0

!
, b =Ã

x2 x+ x3

3x 3x2

!
. Then e + b =

Ã
1 + x2 x+ x3

3x 3x2

!

which is a conjugate of

Ã
1 0
0 0

!
. Here 1−b2 = diag(1−

3x2, 1− 3x2) which is not invertible.



Remark Let e, b ∈ R be such that e, e0 = e+b ∈ E(R).
Let u = 2e− 1.

1. If k ∈ N is odd, then (ebk + ebk+1)e = 0.

2. If k ∈ N is odd, then e+ eb+ eb2 + · · ·+ ebk−1 is
an idempotent.

3. If bk = 0, then e+ eb+ eb2+ · · ·+ ebk−1 is always
an idempotent.

4. e− (1 + 2ub)b is an idempotent and we have (1 +
ub)e = (e− (1 + 2ub)b)(1 + ub).

5. e+ 2b(1 + ub) is an idempotent and we have (e+
b)(1 + ub) = (1 + ub)(e+ 2b(1 + ub)).

6. If be = eb, then b = b3. In particular, b2 is an
idempotent.



Theorem Any idempotent f of R[[x]] is conjugate to
its constant term. Thus, in particular, any idempotent of
R[[x1, . . . , xn]] is conjugate to an idempotent of R.

Corollary Let R be a ring. Then

1. Any idempotent of R[x]/(xn) is conjugated to an
idempotent of R.

2. Any idempotent of the upper triangular matrix ring
An(R) of n×n matrices over R is conjugated to a
diagonal idempotent matrix.

3. If S is another ring and RMS is an (R,S)-bimodule,

then any idempotent of the ring T =

Ã
R M
0 S

!
is

conjugate to an idempotent of R⊕ S.



Corollary Let R be any ring and e(x) = e+cxn ∈ R[x]

be an idempotent, where e, c ∈ R and n ≥ 1. Then
e(x) is conjugate in R[x] to e = e2 ∈ R. In particular,
every idempotent of R[x] having degree one is conjugate
to an idempotent of R.

Proof Note that e(x) is an idempotent implies e is an
idempotent and b = cxn a nilpotent element.

QuestionWhat can we say about polynomials of the type
e+ bxm + cxn ∈ R[x] (m 6= n)?

Answer In general, No.



Definition A ring R is called 2-primal if
R

B(R)
is re-

duced, equivalently, the set of all nilpotent elements of
R coincides with the prime radical B(R) of R.

Theorem Suppose R is a 2-primal ring. Then any idem-
potent ofR[x±11 , x±12 , . . . , x±1n ] as well as ofR[x1, . . . , xn].
is conjugated to an idempotent of R.



Definition An idempotent e of a ring R is called right
semicentral if er = ere, for all r ∈ R. Left semicentral
idempotents are defined similarly.

Proposition Let T ⊂ S be a ring extension and e, f ∈
T be right semicentral idempotents of S. If e, f are
conjugate in S, then:

1. e = ef and f = fe;

2. e and f are conjugate in T .

Theorem Let f be a right (resp. left) semicentral idem-
potent of R[x]. Then f is conjugate to the free term of
f .



Definition Two elements e, e0 of a ring R are called
equivalent if there exist invertible elements p, q ∈ R such
that e0 = peq.

Corollary Let e, e0 be two idempotents of a ring R. Then
e and e0 are equivalent if and only if they are conjugate.



Definition A ring R is called projective-free if every fi-
nitely generated projective R-module is free of unique
rank.

Remark A ring is projective-free precisely when it has
invariant basis number (IBN for short) and every idempo-
tent matrix is conjugate to a matrix of the form diag(1, . . . , 1,
0 . . . , 0).

Theorem

1. Let I denote an ideal of ring R contained in the
Jacobson radical J(R) of R. If R/I is projective-
free then R is also projective-free;

2. Every local ring R is projective-free.

Theorem (Cohn) LetR be any projective-free ring. Then
the power series ring R[[x]] is again projective-free.



Remark Suppose B is a ring such that the ring B[x] is
projective-free. Then, looking atMn(B)[x] asMn(B[x]),
every idempotent of R[x] is conjugate to an idempotent
of R =Mn(B).

Definition A ring R is called an ID ring if every idem-
potent matrix over R is conjugated to a diagonal matrix.

Theorem Let R be a 2-primal ring such R[x] is an ID-
ring. Then every idempotent e ∈ Mn(R)[x] is conju-
gated to a diagonal matrix of the form diag(e1, . . . , en) ∈
Mn(R), where ei’s denote idempotents in R.

Remark Any commutative ring R such that R/B(R) is
a principal ideal ring fulfills the assumptions of the above
theorem.



Thank You


