On idempotents and clean elements in certain ring extensions

Pramod Kanwar
Ohio University-Zanesville

Noncommutative Rings and their Applications

> Lens (France)
> July 1-4, 2013

Definition An element of a ring is called clean if it can be expressed as a sum of an idempotent and a unit in the ring. A ring is called clean if each of its elements is clean.

- Clean Group Algebras

Observation Suppose $K H$ is clean for every finitely generated subgroup H of a group G. Then $K G$ is clean.

Observation If G is a locally finite group, then $K G$ is clean.

- - Notation

$$
\begin{aligned}
& \Delta(G)=\left\{x \in G \mid\left[G: C_{G}(x)\right]<\infty\right\} \\
& \Delta^{+}(G)=\{x \in \Delta(G) \mid o(x)<\infty\} \\
& \quad=\left\{x \in G \mid\left[G: C_{G}(x)\right]<\infty \text { and } o(x)<\right. \\
& \infty\}
\end{aligned}
$$

$$
\Lambda(G)=\left\{x \in G \mid\left[G: C_{G}(x)\right]=\text { I.f. }\right\}
$$

(Recall $[G: H]=$ I.f. means $[K: K \cap H]<\infty$ for all finitely generated subgroups K of G.)
$\Lambda^{+}(G)=\{x \in \Lambda(G) \mid o(x)<\infty\}$
For any group G and any element $\sum_{g \in G} \alpha_{g} g$ in $K G$,

$$
\left(\sum_{g \in G} \alpha_{g} g\right)^{*}=\sum_{g \in G} \alpha_{g} g^{-1}
$$

D_{∞} : Infinite Dihedral group, that is, the group generated by two elements a and b where a is of infinite order and $b^{2}=1, a b=b a^{-1}$.

For any ring R,
$U(R)$: Group of all units in R.

Definition A group G is called polycyclic if G has a finite subnormal series

$$
\begin{equation*}
\text { (1) }=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n}=G \tag{1}
\end{equation*}
$$

such that each quotient G_{i+1} / G_{i} is cyclic. If G_{i+1} / G_{i} is either cyclic or finite then G is called polycyclic-by-finite.

Definition A group G is called nilpotent if G has a central series, that is, a normal series

$$
(1)=G_{0} \leq G_{1} \leq \cdots \leq G_{n}=G
$$

such that each quotient G_{i+1} / G_{i} is contained in the center of G / G_{i} for all i.

Proposition Let K be a field and G be a polycyclic-byfinite group. Then $K G$ is clean if and only if G is finite. In particular, for any field K, the group algebra $K D_{\infty}$ of the infinite dihedral group, D_{∞}, is not clean.

Proposition Let G be a finitely generated solvable group such that the group algebra $K G$ is clean. Then G is finite.

Proof Proof by induction on the solvability length of G.

Corollary Let G be a group with a torsion $F C$ subgroup. Suppose H is an $F C$ normal subgroup of G such that $\frac{G}{H}$ is finitely generated solvable. If $K G$ is clean then G H is locally finite.

Theorem Let G be a nilpotent or FC or locally FC group. Then $K G$ is clean if and only if G is locally finite.

Proposition Let G be a residually finite p-group and K be a field of characteristic $p>0$. Then $K G$ is clean if and only if it is local and hence G is torsion. (Recall a group G is called residually finite if for every $g \neq 1$ in G there exists a normal subgroup N of G such that $g \notin N$ and $\frac{G}{N}$ is finite.)

Lemma Let G be a residually finite p-group and K be a field of characteristic $p>0$. Then $K G$ has no non trivial idempotents.

Example Let G be an infinite cyclic group. Since G is a free group, it is residually a finite p-group for all primes p. However, $K G$ is not clean. Note that, in this example, for every non trivial subgroup H of $G, K\left[\frac{G}{H}\right]$ is clean but $K H$ is not clean.

Proposition Let $K G$ be a prime group algebra in which all idempotents are central. If $K G$ is clean then $K G$ is local.

Corollary Let $K G$ be a prime group algebra such that supporting group of all idempotents in $K G$ is finite. If $K G$ is clean then G is torsion.

- Clean elements in $K D_{\infty}$
- D_{∞} : Infinite Dihedral group, that is, the group generated by two elements a and b where a is of infinite order and $b^{2}=1, a b=b a^{-1}$.
- $A:\langle a\rangle$, infinite cyclic group generated by a.
- For any group G and any element $\sum_{g \in G} \alpha_{g} g$ in $K G$,

$$
\left(\sum_{g \in G} \alpha_{g} g\right)^{*}=\sum_{g \in G} \alpha_{g} g^{-1}
$$

- Clean elements in $K D_{\infty}$
- Some remarks
* For any unit $\alpha+\beta b$ in $K D_{\infty}, \alpha \alpha^{*}-\beta \beta^{*} \in$ $K \backslash\{0\}$.
* For any idempotent $\alpha+\beta b$ in $K D_{\infty}, \alpha+\alpha^{*}=$ 1 and $\alpha \alpha^{*}=\beta \beta^{*}$.
* Any idempotent e in $K D_{\infty}$ has the form $2^{-1}+$ $\alpha_{1}+\beta b$ where $\alpha_{1}=-\alpha_{1}^{*}$ and $\alpha_{1} \alpha_{1}^{*}-\beta \beta^{*}$ is a nonzero element of K.
* If $\operatorname{char}(K)=2$, then $K D_{\infty}$ has no nontrivial idempotents and hence any element α in $K D_{\infty}(\operatorname{char}(K)=2)$ is clean if and only if either it is a unit or $\alpha-1$ is a unit.
- Clean elements in $K D_{\infty}$

Theorem Let K be a field of characteristic not equal to 2 and let $\alpha \in K A \subset K D_{\infty}$.

1. If $\alpha=a+\beta$, where $\beta=-\beta^{*}$ and $a \in K$ then α is clean in $K D_{\infty}$ if and only if $a \neq 0,1$.
2. If $\alpha=\alpha^{*}$, then α is clean in $K D_{\infty}$ if and only if $\alpha \in K$.

Remark. Same argument can be used if K is replaced with a commutative domain in which 2 is invertible.

Remark. It can be similarly proved that

1. If $0 \neq \alpha=\alpha^{*} \in K A$ then $\alpha(1+b)$ is clean if and only if $\alpha \in K$.
2. If $\alpha^{*}=-\alpha \in K A$ then $\alpha(1+b)$ is never clean.

- Clean elements in Polynomial Rings

Known $R[x]$ is not clean. (Infact, $x \in R[x]$ is not clean.)

Observation If R is reduced ring then clean elements in $R[x]$ are in R.

Proposition $C l(R[X])=C l(R)$ if and only if R is reduced where $C l(R)$ denotes the set of clean elements in R.

Proof If $a \in R$ is a nilpotent element, then $u=1+a x$ is invertible in $R[x]$, so $C l(R[X]) \neq C l(R)$ in this case. If R is reduced then $U(R[x])=U(R)$ and $E(R[x])=$ $E(R)$. Thus also $C l(R[x])=C l(R)$.

- Idemptents in Polynomial Rings and other ring extensions

For a unital ring R,
$E(R)$: Set of all idempotents in R.
$J(R)$: Jacobson radical of R.
$B(R)$: Prime radical of R.

Lemma Let R be a ring and $e(x)=\sum_{i=0}^{\infty} e_{i} x^{i} \in R[[x]]$ be an idempotent. If $e_{0} e_{i}=e_{i} e_{0}$, for every $i \geq 1$, then $e(x)=e_{0}$. In particular, if R is abelian, then $E(R[[x]])=E(R[x])=E(R)$.

Proposition Let S_{n} denote one of the following rings $R\left[x_{1}, \ldots, x_{n}\right], R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ and $R\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. If e is a central idempotent of S_{n}, then $e \in R$.

Corollary (Bass) Let K be a commutative ring and G an abelian group with the torsion part H. Then any idempotent of $K G$ belongs to $K H$.

Theorem For a ring R, the following conditions are equivalent

1. R is abelian.
2. Idempotents of R commute with units of R.
3. $E(R[[x]])=E(R)$.
4. $E\left(R\left[x, x^{-1}\right]\right)=E(R)$.
5. $E(R[x])=E(R)$.

6 . There exists $n \geq 1$ such that $R[x]$ does not contain idempotents which are polynomials of degree n.

Remark Each of the statements in the above proposition is equivalent to the statement

The rings $R[x], R[[x]], R\left[x, x^{-1}\right]$ are all abelian.

Corollary Let S denote one of the rings $R\left[x_{1}, \ldots, x_{n}\right]$, $R\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$. Then R is is abelian if and only if S is abelian if and only if $E(S)=$ $E(R)$.

Proposition Let M be an additive monoid with neutral element 0 and suppose $R=\bigoplus_{m \in M} R_{m}$ is an M-graded ring. Then

1. If R_{0} is abelian and $E(R)=E\left(R_{0}\right)$, then R is an abelian ring.
2. Suppose $M=\mathbb{Z}$. Then R is abelian if and only if R_{0} is abelian and $E(R)=E\left(R_{0}\right)$.

Remark The analogue of the statement 'the polynomial ring $R[x]$ is abelian if and only if R is abelian' does not hold for \mathbb{Z}-graded rings. Indeed, if K is a field and $e=(1,0) \in K \times K=R_{0}$ then R_{0} is commutative but the idempotent e is not central in $R=R_{0}[x ; \sigma]$, where σ is the automorphism of $R_{0}=K \times K$ switching components.

Example Let $R=M_{2}\left(\mathbb{Z}_{4}\right) . E=\left(\begin{array}{cc}1+x^{2} & x+x^{3} \\ 3 x & 3 x^{2}\end{array}\right)$.
E is an idempotent in $R[x]$.
E is conjuage to the idempotent $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ in R. Indeed,
$E=P^{-1}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) P$ where $P=\left(\begin{array}{cc}1 & x \\ x & 1+x^{2}\end{array}\right)$.
Remark Note that if $e(x)=\sum_{i=0}^{n} e_{i} x^{i} \in R[x]$ is an idempotent then $e(x)=e_{0}+b$ where e_{0} is an idempotent in R.

Proposition Let e, b, u be elements in a ring R such that $e^{2}=e$ and $u=2 e-1$. Then the following conditions are equivalent.

1. $e+b$ is idempotent.
2. $b e+e b+b^{2}=b$.
3. $(1+b u) e=(e+b)(1+b u)$.

Moreover, if one of the equivalent statements holds then
4. $b u+u b=-2 b^{2}$.
5. $b^{2} u=u b^{2}$ and $(1+b u)(1+u b)=(1+u b)(1+$ $b u)=1-b^{2}$.
6. $1+b u$ is invertible iff $1+u b$ is invertible iff $1-b^{2}$ is invertible.

7. $(1+2 u b)(1+2 b u)=1$ and $b^{2} u=u b^{2}$.

Corollary Let $e, b \in R$ be such that $e, e+b \in E(R)$. If $1-b^{2}$ is invertible, then e and $e+b$ are conjugate. In particular this holds when either b is nilpotent or $b \in$ $J(R)$ - the Jacobson radical of R.

Remark It is possible for two idempotents to be conjugates without $1-b^{2}$ being invertible.

Example Let $R=M_{2}\left(\mathbb{Z}_{4}\right) . \quad e=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), b=$ $\left(\begin{array}{cc}x^{2} & x+x^{3} \\ 3 x & 3 x^{2}\end{array}\right)$. Then $e+b=\left(\begin{array}{cc}1+x^{2} & x+x^{3} \\ 3 x & 3 x^{2}\end{array}\right)$ which is a conjugate of $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Here $1-b^{2}=\operatorname{diag}(1-$ $3 x^{2}, 1-3 x^{2}$) which is not invertible.

Remark Let $e, b \in R$ be such that $e, e^{\prime}=e+b \in E(R)$. Let $u=2 e-1$.

1. If $k \in \mathbb{N}$ is odd, then $\left(e b^{k}+e b^{k+1}\right) e=0$.
2. If $k \in \mathbb{N}$ is odd, then $e+e b+e b^{2}+\cdots+e b^{k-1}$ is an idempotent.
3. If $b^{k}=0$, then $e+e b+e b^{2}+\cdots+e b^{k-1}$ is always an idempotent.
4. $e-(1+2 u b) b$ is an idempotent and we have ($1+$ $u b) e=(e-(1+2 u b) b)(1+u b)$.
5. $e+2 b(1+u b)$ is an idempotent and we have $(e+$ $b)(1+u b)=(1+u b)(e+2 b(1+u b))$.
6. If $b e=e b$, then $b=b^{3}$. In particular, b^{2} is an idempotent.

Theorem Any idempotent f of $R[[x]]$ is conjugate to its constant term. Thus, in particular, any idempotent of $R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is conjugate to an idempotent of R.

Corollary Let R be a ring. Then

1. Any idempotent of $R[x] /\left(x^{n}\right)$ is conjugated to an idempotent of R.
2. Any idempotent of the upper triangular matrix ring $A_{n}(R)$ of $n \times n$ matrices over R is conjugated to a diagonal idempotent matrix.
3. If S is another ring and ${ }_{R} M_{S}$ is an (R, S)-bimodule, then any idempotent of the ring $T=\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ is conjugate to an idempotent of $R \oplus S$.

Corollary Let R be any ring and $e(x)=e+c x^{n} \in R[x]$ be an idempotent, where $e, c \in R$ and $n \geq 1$. Then $e(x)$ is conjugate in $R[x]$ to $e=e^{2} \in R$. In particular, every idempotent of $R[x]$ having degree one is conjugate to an idempotent of R.

Proof Note that $e(x)$ is an idempotent implies e is an idempotent and $b=c x^{n}$ a nilpotent element.

Question What can we say about polynomials of the type $e+b x^{m}+c x^{n} \in R[x](m \neq n)$?

Answer In general, No.

Definition A ring R is called 2-primal if $\frac{R}{B(R)}$ is reduced, equivalently, the set of all nilpotent elements of R coincides with the prime radical $B(R)$ of R.

Theorem Suppose R is a 2 -primal ring. Then any idempotent of $R\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ as well as of $R\left[x_{1}, \ldots, x_{n}\right]$. is conjugated to an idempotent of R.

Definition An idempotent e of a ring R is called right semicentral if er $=e r e$, for all $r \in R$. Left semicentral idempotents are defined similarly.

Proposition Let $T \subset S$ be a ring extension and $e, f \in$ T be right semicentral idempotents of S. If e, f are conjugate in S, then:

1. $e=e f$ and $f=f e$;
2. e and f are conjugate in T.

Theorem Let f be a right (resp. left) semicentral idempotent of $R[x]$. Then f is conjugate to the free term of f.

Definition Two elements e, e^{\prime} of a ring R are called equivalent if there exist invertible elements $p, q \in R$ such that $e^{\prime}=p e q$.

Corollary Let e, e^{\prime} be two idempotents of a ring R. Then e and e^{\prime} are equivalent if and only if they are conjugate.

Definition A ring R is called projective-free if every finitely generated projective R-module is free of unique rank.

Remark A ring is projective-free precisely when it has invariant basis number (IBN for short) and every idempotent matrix is conjugate to a matrix of the form $\operatorname{diag}(1, \ldots, 1$, $0 \ldots, 0$).

Theorem

1. Let I denote an ideal of ring R contained in the Jacobson radical $J(R)$ of R. If R / I is projectivefree then R is also projective-free;
2. Every local ring R is projective-free.

Theorem (Cohn) Let R be any projective-free ring. Then the power series ring $R[[x]]$ is again projective-free.

Remark Suppose B is a ring such that the ring $B[x]$ is projective-free. Then, looking at $M_{n}(B)[x]$ as $M_{n}(B[x])$, every idempotent of $R[x]$ is conjugate to an idempotent of $R=M_{n}(B)$.

Definition A ring R is called an $I D$ ring if every idempotent matrix over R is conjugated to a diagonal matrix.

Theorem Let R be a 2-primal ring such $R[x]$ is an $I D$ ring. Then every idempotent $e \in M_{n}(R)[x]$ is conjugated to a diagonal matrix of the form $\operatorname{diag}\left(e_{1}, \ldots, e_{n}\right) \in$ $M_{n}(R)$, where e_{i} 's denote idempotents in R.

Remark Any commutative ring R such that $R / B(R)$ is a principal ideal ring fulfills the assumptions of the above theorem.
$\mathfrak{T h a n k} \mathfrak{Y}$ ou

